Hemodynamic Changes Caused by Exposure of Animals with Acute Immobilization Stress to Continuous Terahertz Radiation with Frequencies equal to Absorption and Emission Frequencies of Nitrogen Oxide and Atmospheric Oxygen

Department of Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia

Received 10 September 2012, Accepted 12 October 2012. © 2012, Russian Open Medical Journal

Abstract: The aim was to study the effects of exposure of albino rats to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) during their immobilization stress on their blood flow rate. Methods – The group of 120 male non-pedigree albino rats with average weight of 180-220 g was chosen as a test subject. Simulation of hemodynamic disorders was achieved by incurring active immobilization stress. All rats were exposed to electromagnetic terahertz radiation equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) for 5, 15 and 30 minutes. Results – Experimental simulation of hemodynamic disorders during acute immobilization stress has shown that exposure to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) for 5, 15 and 30 minutes allows to revert post-stress hemodynamic changes in great vessels. Conclusion – This allows using terahertz electromagnetic radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) to treat hemodynamic disorders accompanying some of pathologic diseases.

Keywords: hemodynamics, linear blood flow rate, terahertz waves, nitrogen oxide, atmospheric oxygen.

Cite as Kirichuk VF, Velikanov VV, Velikanova TS, Antipova ON, Andronov EV, Ivanov AN, Parshina SS, Babichenko NE, Kiriyazi TS, Ponukalina EV, Smyshlyaeva IV, Tokaeva LK, Tsymbal AA. Hemodynamic Changes Caused by Exposure of Animals with Acute Immobilization Stress to Continuous Terahertz Radiation with Frequencies equal to Absorption and Emission Frequencies of Nitrogen Oxide and Atmospheric Oxygen. Russian Open Medical Journal 2012; 1: 0303.

Correspondence to Prof. Vyacheslav F. Kirichuk. Address: Department of Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, 112, Bolshaya Kazachiya str., Saratov, 410012, Russia. E-mail: normal@yandex.ru.

Introduction

Hemodynamic disorders can be treated by a wide range of vasodilating agents. However, the optimal results are rather hard to achieve: there is always a risk of undesirable adverse effects and counter indications limiting application of these agents.

That’s why, nowadays, development of new drug-free methods of hemodynamic disorder treatment is a subject of intense study. One of such methods is application of low-intensive millimeter and submillimeter radiation [1-4].

In recent years, a new branch of information therapy has emerged – terahertz therapy [5]. Terahertz frequency band makes for an interesting research subject because molecular absorption and emission spectra (MAES) of various cell metabolites (NO, CO, active forms of oxygen etc.) belong to this band [6].

Of the above mentioned test subjects for electromagnetic radiation effect study, the most interesting are frequencies of absorption and emission spectra of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) as there is evidence of positive effect of the said frequencies energy deposition on rheological properties of blood and platelet functional activity [7, 8], blood clotting and fibrinolytic activity [8], blood gas and electrolyte concentration [10], lipid peroxidation and antioxidative activity [11, 12], functional status of thyroid body [13], primary indices of metabolic status [14], concentration of adrenocorticotropic hormone in blood [15], receptor system of formed blood elements [16], state of vascular endothelium [17] and microcirculation [18].

The lack of data on physiological effects of exposure of albino rats to electromagnetic terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) during their immobilization stress leading to disrupted blood flow velocity served as a primary reason for studying various modes of terahertz radiation with the said frequencies.
Thus, the aim of this work is to study the effects of exposure of albino rats to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.040.75 GHz) during their immobilization stress on their blood flow rate.

Material and methods

In order to find a solution to the aforementioned problem, a group of 120 male non-pedigree albino rats with average weight of 180-220 g was chosen as a test subject. Simulation of hemodynamic disorders was achieved by incurring active immobilization stress.

The animals were exposed to electromagnetic terahertz radiation equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.040.75 GHz). The exposure was done using Orbita, an extremely-high frequency (EHF) therapy apparatus ([19], [20]). The animals with acute immobilization stress received a single dose of radiation for 5, 15 and 30 minutes.

Blood flow analysis within abdominal aorta and femoral artery was performed using MM-D-F portable microprocessor-based Doppler ultrasonograph (“Minimax”, Russia) [21] and Doppler ultrasonic transducer with 10 MHz working frequency used for ultrasound probing. During the analysis, the following parameters were registered: average linear blood flow velocity (Vam), average linear systolic blood flow velocity (Vas), average linear diastolic blood flow velocity (Vad) and pressure differential (PG).

The studied animals were divided into 5 groups of 15 rats each: 1st group – control group (noninvolved animals), 2nd group – comparison group (animals with acute immobilization stress), 3rd, 4th and 5th groups were comprised of animals exposed to terahertz radiation equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) for 5, 15 and 30 minutes (respectively) while 6th, 7th and 8th were comprised of animals exposed to terahertz radiation equal to absorption and emission frequencies of atmospheric oxygen (129.040.75 GHz) for 5, 15 and 30 minutes (respectively).

The obtained data were processed with generally accepted parametric and nonparametric methods of statistical analysis using Statistica for Windows v.6.0 software. As Gaussian law was found to be not applicable to majority of obtained data, Mann-Whitney U test was used for value comparison instead and Fischer’s z test and certainty factor p were calculated on the basis of Mann-Whitney U test value.

Results

According to test results, acute immobilization stress leads to statistically-valid (in comparison to control group) changes of hemodynamic parameters including increase of average linear, average linear systolic and average linear diastolic blood flow velocities as well as pressure differential. I.e., in abdominal aorta linear blood flow velocity increased by 26%, systolic blood flow velocity – by 15%, diastolic blood flow velocity – by 75% and pressure gradient – by 34%, while in femoral artery, linear blood flow velocity increased by 50%, systolic blood flow velocity – by 23%, diastolic blood flow velocity – by 25% and pressure gradient – by 67%.
Maximal efficiency of continuous exposure of male rats with acute immobilization stress to terahertz radiation equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) was found to be achieved after 5 minutes exposure to terahertz waves. In this case, exposure of male rats with acute immobilization stress to terahertz radiation led to complete recovery from any systematic hemodynamic disorders of abdominal aorta and femoral artery which was evidenced by absence of statistically-valid differences in such hemodynamic parameters as average linear, average linear systolic and average linear diastolic flow velocities as well as pressure differential of animals from the studied group in comparison to animals from control group. Continuous exposure of male rats with acute immobilization stress to terahertz radiation for 15 and 30 minutes also led to complete recovery from any systematic hemodynamic disorders in both of the abovementioned great vessels (Tables 1 and 2).

Continuous exposure of male rats with acute immobilization stress to terahertz radiation equal to absorption and emission frequencies of atmospheric oxygen (129.0±0.75 GHz) for 5 minutes leads to normalization of all studied hemodynamic parameters of abdominal aorta and femoral artery. Further increase of time of exposure to electromagnetic terahertz radiation equal to absorption and emission frequencies of atmospheric oxygen to 15 and 30 minutes does not appear to increase biological effect of terahertz radiation to hemodynamic parameters (Tables 3 and 4).

Discussion

Active forms of oxygen acts as intermediate agents for positive effect of electromagnetic terahertz radiation equal to absorption and emission frequencies of nitrogen oxide and atmospheric oxygen in cells and body fluids [22]. The said active forms are generated as a result of enzyme-caused changes in hydration of protein molecules and increase of nicotinamide adenine dinucleotide phosphate oxidase, cyclooxygenase and xanthine oxidase activity while concentration of the said enzymes is kept on stationary level. In their turn, active forms of oxygen together with Ca2+ stimulate soluble guanylate cyclase, accumulation of cyclic guanosine monophosphate in endothelial vessel cells and increase of NO-synthase activity which leads to increase of NO generation. This may be one of possible mechanisms of both anti-stress and vasodilating effect of terahertz radiation equal to absorption and emission frequencies of nitrogen oxide and atmospheric oxygen. Synthesized nitrogen oxide has the ability to form complex compound which can act as a sort of repository in vessel endothelium which is capable of releasing NO, if necessary [23, 24].

Nitrogen oxide is a natural regulator of vascular tone, thus causing vasodilating effect [25]. Activation of NO-ergic system also restricts excessive secretion of pituitary-hypothalamic stress hormones (adrenocorticotropic hormone, adrenocorticotropic hormone releasing hormone etc.), blocks secretion of catecholamines by adrenal glands and nerve terminals [26]. Nitrogen oxide also supports stress limiting effect of GABA(gamma-aminobutyric acid)-ergic and opioidergic systems [27] by decreasing concentration of stress-inducing hormones (including adrenaline and adrenocorticotropic hormone), which leads to recovery of platelet aggregation ability disrupted by acute immobilization stress.
Mechanism of terahertz waves' activity always includes NO-synthase [28, 29]. NO-synthase can influence formation of active forms of oxygen in endothelial cells by activating nicotinamide adenine dinucleotide phosphate oxidase, thus causing vascular relaxation. I.e. hydrogen peroxide causes endothelium-dependent vessel vasodilatation which is mediated by prostaglandins E2 and I2 [30].

It is known that electromagnetic terahertz radiation equal to absorption and emission frequencies of nitrogen oxide and atmospheric oxygen can replenish decreased nitrite concentration in blood plasma during stress [31, 32] which can serve as a indirect indication of normalization of nitrogen oxide generation process and provides an opportunity to normalize endothelial functions.

Conclusion

The results of this study has shown that according to experimental simulation of hemodynamic disorders during acute immobilization stress, exposure to continuous terahertz radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) for 5, 15 and 30 minutes allows to revert post-stress hemodynamic changes in great vessels. This allows using terahertz electromagnetic radiation with frequencies equal to absorption and emission frequencies of nitrogen oxide (150.176-150.664 GHz) and atmospheric oxygen (129.0 ± 0.75 GHz) to treat hemodynamic disorders accompanying some of pathologic diseases.

Conflict of interest: none declared.

Reference

14. Tsymbal AA, Kirichuk VF, Krenitski AP. Recovery of Primary Indices of Metabolic Status by Exposure to Terahertz Electromagnetic Waves with Frequencies of Nitrogen Oxide (150.176 – 150.64 GHz) as a Result of Experiment. Biomeditsynskaya radioelectronika (Biomedical Radioelectronics) 2011; (1): 30-35 [Article in Russian].

15. Tsymbal AA, Kirichuk VF, Anipova ON. Changes of Concentration of Adrenocorticotropic Hormone in Blood of Experimental Animals as a Result of Exposure to Terahertz Electromagnetic Waves with 129.0 GHz Frequency of Atmospheric Oxygen During Acute and Continuous Stress. Biomeditsynskaya radioelectronika (Biomedical Radioelectronics) 2011; (8): 23-29 [Article in Russian].

17. Kirichuk VF, Ivanov AN, Kiriazi TS. Changes in Functional State of Endothelium and Peripheral Perfusion of Albino Rats with Acute Immobilization Stress as a Result of Exposure to Terahertz Electromagnetic Waves with Frequencies of Nitrogen Oxide. Biomeditsynskaya radioelectronika (Biomedical Radioelectronics) 2010; (12): 30-37 [Article in Russian].

22. Potselueva MM, Pustovidko AV, Evtodenchko YuV. The formation of reactive oxygen species in aqueous solution under the influence of...
electromagnetic radiation EHF. *Doklady Akademii Nauk* 1998; (3): 415-418 [Article in Russian].

28. Kirichuk VF, Ivanov AN, Kiryazi TS. The role of NO-synthase in the reaction of endothelium and changes in peripheral perfusion under the influence of electromagnetic terahertz waves at frequencies of nitric oxide in albino rats in a state of acute stress. *Biomeditsynskaya radioelectronika* (Biomedical Radioelectronics) 2011; (8): 12-18 [Article in Russian].

Authors:

Vvacheslav F. Kirichuk – MD, D.Sc., Professor, Honored Scientist of Russia, Head of Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;

Vitaly V. Velikanova – MD, Postgraduate, Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;

Tatyana S. Velikanova – MD, PhD, Assistant, Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;

Olga N. Antipova – MD, D.Sc., Associate Professor, Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;

Evgeny V. Andronov – MD, D.Sc., Professor, Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;

Alexey N. Ivanov – MD, PhD, Associate Professor, Department of Normal Physiology n.a. I.A. Chuevsky, Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia;