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Abstract: The review aimed at pooling together available information on 5'-nucleotidase – an enzyme hydrolyzing ribo- and 
deoxyribonucleoside-5'-monophosphates. The most important product of 5'-nucleotidase activity is adenosine. This enzyme is, in fact, 
involved in most aspects of normal physiology, along with numerous pathological processes. The article discusses the role of the enzyme in 
pregnancy, its involvement in early post-implantation development, proliferation, migration/invasion, trophoblast differentiation, 
decidualization, angiogenesis, vasculogenesis, modulation of cell growth during embryonic development, regulation of hemodynamics, and 
control of myometrial contractions. A large section of this review is dedicated to the contribution of 5'-nucleotidase to the development of 
gestational complications, such as preeclampsia. We conducted our study via searching through various databases until October 30, 2021, 
using the following keywords: 5'-nucleotidase, adenosine, pregnancy, and the combinations of those. All reviewed articles were published 
in English. 
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Introduction  

Geoffrey Burnstock developed the concept of purinergic 
signaling linking cellular metabolism to many other processes, 
including proliferation, differentiation, and cell death [1]. The 
purinergic system components include nucleotides and 
nucleosides, along with receptors, transporters, and associated 
enzymes [2]. The latter include nucleoside triphosphate 
diphosphohydrolases and nucleotide 
pyrophosphatases/phosphodiesterases, 5'-nucleotidase, alkaline 
phosphatase, adenosine deaminase, and purine nucleoside 
phosphorylase. These enzymes were described long before 
intercellular signaling was discovered [3]. Initially, their functional 
role was not fully understood, and it was often assumed that 
clinically overt ectonucleotidase activity was the result of cell 
damage and access of substrates to cytosolic nucleotidase. In 
domestic medical science, measuring the activity of such enzymes 
constitutes a method for diagnosing the pathological condition of 
organs and systems. 

The key component of the purinergic system, discussed in this 
review, is 5'-nucleotidase. Basically, it catalyzes the last stage of 
extracellular ATP metabolism with the formation of adenosine, a 
ligand of a large family of purinergic receptors. The enzyme plays 
an important role in maintaining a balanced pool of nucleotides 
involved in various cellular processes [4, 5]. Discovered by J.L. 
Reiss in 1934, 5'-nucleotidase enzyme was originally defined as a 
lymphocyte differentiation antigen (CD73) just before its DNA was 
cloned in 1990 [3, 6]. The name ‘CD73’ is most commonly used in 
recent publications (over the last 10-15 years): it coincided with a 
shift in emphasis on the immune functions. However, 5'-

nucleotidase is ubiquitously expressed in the human body and is 
involved in nearly all aspects of normal physiology and in many 
disease-related processes [5, 6]. 

Various functional roles of this enzyme were reviewed in a 
number of published sources revealing an involvement of CD73 
into various processes in the cardiovascular, respiratory and 
nervous systems, liver and kidney, endothelial transport and 
barrier functions, leukocyte transport, as well as into adaptation to 
hypoxia and ischemia, immunity and inflammation, inhibition of 
nociception, acute pancreatitis, chronic obstructive pulmonary 
disease, microbial infection, immune control of the tumor process 
and metastasis, cardiac hypertrophy, arterial calcification, control 
of coronary vasodilation, neointima formation, arteriogenesis, 
atherogenesis, cardioprotection, and vasculopathy of the cardiac 
allograft [7-14]. 

 

Role of 5'-nucleotidase in pregnancy 

During pregnancy, an activity/expression of 5'-nucleotidase 
intensifies. Simultaneous detection of the blood plasma level 
increase of adenosine in pregnant women allowed concluding that 
it derived from an increase in CD73 activity in the course of 
gestation period [15-17]. This circumstance allowed a number of 
studies expressing an opinion that 5'-nucleotidase played an 
important role in the reproductive system. 

The functional importance of this enzyme is virtually always 
determined by the role of substances, the metabolism and content 
of which depends on 5'-nucleotidase activity. In this regard, the 
functional impact of CD73 is directly related to the effects of 
adenosine. Extracellular ATP and adenosine, the concentrations of 
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which are controlled by nucleotidases, play an important role in 
embryogenesis, organogenesis, and postnatal development in 
vertebrates, including humans [18]. The earliest studies of their 
importance in reproduction were discussed in terms of their 
intracellular functioning, as well as their role as an exergy source. 
However, it is currently accepted that they have a powerful 
extracellular effect mediated by the activation of specific 
membrane receptors. For example, ATP is required to initiate and 
maintain myometrial contractions, as well as to control Cl- 
secretion and Na+ absorption in the endometrium [19]. Besides, it 
regulates the decidualization of stromal cells, mediates an 
interaction between the blastocyst and endometrium; stimulates 
the activity of placental 11β-hydroxysteroid dehydrogenase type 2, 
which is believed to play a key role in fetal development; and 
regulates the vascular bed in the human fetoplacental system [20-
22]. 

Extracellular adenosine, formed as a result of CD73 action, 
coordinates early post-implantation events [15, 19]. Adenosine 
could be the factor involved in proliferation, migration/invasion, 
and differentiation of trophoblasts [23]. The exact mechanisms 
underlying adenosine signaling during pregnancy have not been 
identified yet. The regulation of the matrix metalloproteinase 
activity is among the proposed possible options [24]. 

The level of adenosine substantially increases during cell 
differentiation into specialized secretory decidual cells [22] and 
coincides in time with the morphological changes observed during 
decidualization. The data obtained in the study of the mechanism 
of decidualization implied that successful and effective process 
requires a balance and interaction between ATP as a 
proinflammatory molecule and adenosine as an anti-inflammatory 
factor [22]. 

Adenosine, in all likelihood, plays a major role in placenta, as 
evidenced by various facts. First, the localization of 5'-nucleotidase 
was found on the outer surface of the plasma membrane microvilli 
in syncytiotrophoblast [25, 26], which was considered evidence of 
CD73 involvement in the regulation of microcirculation in human 
placenta. Second, the placental trophoblast expresses nearly 
entire spectrum of purinergic receptors [22]. Also, the 
participation of placenta in regulating the function associated with 
adenosine was observed in many experiments [20, 27, 28]. Hence, 
this nucleoside potentially controls metabolic signals via acting on 
purinergic receptors at the interface between the placenta and the 
decidua. The study of the transport and metabolism of adenosine 
in the human placenta demonstrated that it occurred both intra- 
and extracellularly [27]. Adenosine regulates the transport of 
nutrients and the tone of the vascular bed in the human 
fetoplacental complex [29, 30]. Notably, the nucleoside can cause 
vasodilatation or vasoconstriction, depending on the specific site 
of action in the placenta [31], as well as oxygen tension [32]. 

Adenosine may also be important in angiogenesis and 
vasculogenesis of the placenta and fetus. Numerous studies 
conducted on various cells established that the nucleoside 
substantially stimulated the production of proangiogenic factors, 
such as vascular endothelial growth factor (VEGF), membrane-
bound soluble fms-like tyrosine kinase-1 (sFlt-1), interleukin (IL)-6, 
IL-8 and basic fibroblast growth factor (bFGF) [23, 33-35]. Despite 
the fact that the role of this nucleoside in the formation of blood 
vessels in pregnancy was little studied, it may be involved in the 
control of these processes. 

A number of reports mention adenosine as one of the 
endogenous effectors that could selectively modulate cell growth 
during embryonic development [36]. Extracellular adenosine plays 
a signaling role in the control of early morphogenesis after 
implantation [37, 38]. An importance of adenosine was 
characterized particularly well in the morphogenetic development 
of vertebrate limb buds [39] and the nervous system [40]. The role 
of CD73 in the structural and functional brain remodeling, as well 
as during synaptogenesis, is quite important [41]. As the terminal 
member of the enzyme cascade breaking down extracellular ATP, 
CD73 primary role is thought to be the production of adenosine. 
However, some data indicate that the functions of CD73 go 
beyond the activity of the adenosine-producing enzyme. CD73 
carries epitopes involved in cell-cell and cell-matrix interactions, 
binds to extracellular matrix components, and is capable of 
mediating cell adhesion. Accordingly, the enzyme is of great 
importance for intercellular adhesion, signaling, and cell migration 
during the development of the brain, and possibly other organs 
and systems [7, 26, 41]. It is assumed that adenosine, in addition 
to its participation in development, participates in the regulation 
of fetal metabolism [42]. 

It is also believed that adenosine may play a role in 
hemodynamic changes in pregnancy, since it is involved in the 
regulation of a vascular tone. Adenosine can cause vasodilating 
and vasoconstrictive effects through different mechanisms [29, 31, 
35, 43]. 

Besides, adenosine controls the myometrial contractions. In 
the course of some experiments, the suppression of contractile 
activity in uterine muscles was revealed [44], whereas other 
researchers discovered that adenosine caused an increase in 
contractions of the uterine smooth muscles [45]. It was suggested 
that there were two types of adenosine receptors in the 
myometrium: one mediating excitatory responses and the other 
mediating inhibitory effects [20]. 

In late pregnancy, an increase in placental 5'-nucleotidase 
activity was observed in humans [46]; hence, it was suggested that 
this could be due to increased estrogen synthesis and facilitation 
of uterine contractions during labor [20]. 

Therefore, 5'-nucleotidase and adenosine generated by it play 
a significant role in pregnancy. However, too much adenosine 
could be detrimental [47]. For example, in an animal experiment, it 
was found that mouse embryos with elevated adenosine levels 
died in the post-implantation period [35, 48]. 

 

Increased adenosine levels in pregnancy 

High levels of adenosine are conventionally observed in 
overweight/obese pregnant women [49], which, according to 
some researchers, may play an important role in general 
physiological adaptation during pregnancy, including adaptation of 
the cardiovascular, nervous and immune systems. The 
concentration of adenosine in plasma is significantly increased in 
the vomit of pregnant women (hyperemesis gravidarum) [50]. The 
authors of that study proposed that high nucleoside content 
protected against the sickness progression via modulating 
sympathetic neurotransmission. An increase in the concentration 
of adenosine was also discovered in low weight fetuses [51], which 
Y. Yoneyama et al. interpreted in terms of the protective response 
to a low oxygen content and an acidotic shift in the pH of the 
mother’s blood.  
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Altered levels of adenosine are found in blood plasma of the 
umbilical cord vein in gestational diabetes mellitus (GDM). M. 
Subiabre et al. construed elevated concentrations of adenosine in 
the fetal blood as a reflection of disturbances in the metabolic 
state of the human placenta in GDM [52]. In GDM, an adenosine-
mediated disturbance in the contractile response of smooth 
muscles in the chorionic arteries and veins was recorded as well, 
which indicated a complex change in adenosine signaling in the 
fetoplacental system [53]. 

An increase in the level of adenosine in the placenta occurs 
due to the suppression of its metabolism caused by 
pharmacologically significant ethanol concentrations. Such 
situation mediates placental disorders and causes a reduction in 
blood flow, which may lead to insufficient oxygen transport and/or 
fetal acidosis. The resulting fetal hypoxia is an etiological 
component of growth retardation that may contribute to the 
pathogenesis of fetal alcohol syndrome [54]. 

In our opinion, data on the pathogenetic role of CD73 and 
adenosine in the development of preeclampsia are important. It 
has been repeatedly reported [23, 55-58] that adenosine levels in 
the maternal and/or fetal circulation were significantly elevated in 
patients with preeclampsia, compared with women experiencing 
normal pregnancy, and correlated with the severity of the disease. 

Curiously, there is the so-called adenosine paradox in 
preeclampsia, in which elevated levels of adenosine do not 
stimulate angiogenesis, despite the fact that adenosine is a 
proangiogenic factor. The mechanism underlying this 
phenomenon is unclear, suggesting that it may be associated with 
the ability of adenosine to regulate the expression of its receptors 
[59]. 

Currently, there are several alternative explanations of the 
elevated nucleoside levels in this disease. Since adenosine plays a 
protective role in hypoxia/reperfusion preconditioning, as well as 
in inflammation, its increased concentration in women with 
preeclampsia could be interpreted as a protective or 
compensatory mechanism [23, 30]. This hypothesis has not been 
confirmed yet, either experimentally or clinically. 

There are various hypotheses about how the nucleoside 
modulates a variety of processes that may contribute to the 
development of the disease. The mechanisms include adenosine 
regulation of the release of proangiogenic and antiangiogenic 
factors, trophoblast invasion, inhibition of placental development, 
transformation of spiral arteries, cellular stress, and inflammation 
associated with potential asymptomatic ischemia and hypoxia in 
the placenta [23, 30, 48]. 

Several options have been proposed that interpret the 
increase of adenosine levels in maternal blood by ATP hydrolysis 
and/or enhanced platelet activation [60]. The release of adenosine 
from activated platelets is, by most accounts, a factor leading to an 
increase in baseline plasma adenosine concentrations. This 
happens due to an increase in the activity of the corresponding 
enzymes in platelets. Elevated maternal adenosine concentrations 
in preeclampsia are presumed the result of oxygen deprivation 
and ischemia [61], microthrombi formation, or increased secretion 
of catecholamines. The mechanisms leading to augmented 
maternal plasma 5'-nucleotidase activity are unknown. The roles 
of hypoxia, IL-1β, tumor necrosis factor α, and norepinephrine 
production in this phenomenon were discussed in the published 
sources [23]. 

 

Placental 5'-nucleotidase activity in preeclampsia  

As mentioned above, preeclampsia is associated not only with 
an increased concentration of adenosine in the mother, but also in 
the fetoplacental system. Compelling explanations for the 
underlying cause of such increase in placental adenosine 
concentrations were presented by different authors. It was shown 
that adenosine production in placental tissues was enhanced by 5'-
nucleotidase, localized in syncytiotrophoblast. Because 
syncytiotrophoblast is the largest source of CD73, an increase in 
the activity of this placental enzyme is, according to the authors of 
the mentioned study, a key factor in the formation of adenosine in 
preeclampsia [62]. Joint experiments by Chinese and Japanese 
scientists revealed that the genetic deletion of CD73 prevented an 
increase in the level of adenosine in the placenta and reduced the 
severity of preeclampsia symptoms [63]. 

Notably, CD73 is stimulated by hypoxia and inflammation [64], 
suggesting that inflammation and hypoxia-induced CD73 activity 
leads to adenosine production. An increase in the level of the 
latter intensifies the signaling pathways, through which adenosine 
exerts its action. 

Investigation of the molecular basis for the prolonged and 
enhanced placental adenosine signaling that causes preeclampsia 
is in progress. More recently, hypoxia-inducible factor-1α (HIF-1α) 
was hypothesized to play a pivotal role in enhancing placental 
adenosine signaling. T. Iriyama et al. [65, 66] conducted 
experiments on modeling preeclampsia and found that a high 
concentration of adenosine underlay an increased level of 
placental HIF-1α, which, in turn, induced the expression of 5'-
nucleotidase, thereby creating a positive feedback loop. The latter 
promoted the continuous production of HIF-1α. The result was a 
chronic adverse cycle of adenosine production mediated by 5'-
nucleotidase signaling via a specific receptor. It contributed to a 
persistent increase in the level of the transcription factor HIF-1α 
and, consequently, the activation of the gene encoding sFlt-1, 
which caused the development of preeclampsia symptoms. 

An idea was proposed to explain the reduction of blood flow in 
the fetoplacental region during preeclampsia through an 
adenosine-mediated NO-dependent mechanism [67, 68]. It was 
suggested that adenosine, acting via NO and VEGF, could alter 
placental angiogenesis in preeclampsia. According to the authors 
of the hypothesis, adenosine, through the activation of specific 
membrane receptors, increased the level of intracellular cAMP and 
reduced the binding of the nuclear transcription factor NF-κB to 
the NOS2A promoter, which led to a decrease in the gene 
transcriptional activity and a decrease in the expression of 
inducible nitric oxide synthase. This phenomenon may partially 
explain the reduction in placental blood flow, which is 
characteristic of preeclampsia. 

In our opinion, the research by A. Huang et al. was promising 
in terms of establishing a possible mechanism of the negative 
effect of adenosine in preeclampsia. The authors demonstrated 
that elevated levels of adenosine in the placenta caused not only 
the characteristic signs of preeclampsia, but also placental DNA 
hypomethylation, which was associated with changes in gene 
expression and the disease development [69]. 

Interesting results are presented in the publication by C. 
Escudero et al. [59]. In their opinion, a decrease in adenosine-
mediated angiogenesis in preeclampsia may be associated with 
the future development of hypertension in the offspring. 
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Conclusion 

Since the discovery of 5'-nucleotidase over 80 years ago, its 
contribution to molecular signaling for a wide class of physiological 
and pathological processes, including pregnancy, has been 
established. However, much remains to be investigated. In our 
opinion, the analysis of 5'-nucleotidase role in pregnancy is just 
beginning. It is necessary to reveal whether the results regarding 
the participation of CD73 in various biological processes, obtained 
in other body systems, could be extrapolated to the fetoplacental 
complex. The answers to many questions remain uncertain. How 
CD73 regulates proliferation, invasion, trophoblast differentiation, 
and stromal cell decidualization? Under what conditions adenosine 
expands? Under what circumstances it narrows the lumen of 
blood vessels in the placenta and uterus, and also 
enhances/suppresses contractions of the myometrium? What are 
the sequence and molecular regulation of the angiogenic 
adenosine signaling pathway and the functional implications of 
adenosine signaling in the human fetoplacental system? And, 
finally, does CD73 have any other role in gestation other than 
adenosine production? 

To date, multiple associations were established between 
adenosine concentration and the clinical features of preeclampsia 
and other diseases, accompanying pregnancy. However, further 
studies on the mechanism of CD73 action in these complications 
are needed to fully understand how the adenosine paradox arises, 
and whether an increase in adenosine levels has a compensatory 
effect, or else, it is a trigger for the disease development. 
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